781 research outputs found

    General Response

    Get PDF

    Shaped Pupil Lyot Coronagraphs: High-Contrast Solutions for Restricted Focal Planes

    Full text link
    Coronagraphs of the apodized pupil and shaped pupil varieties use the Fraunhofer diffraction properties of amplitude masks to create regions of high contrast in the vicinity of a target star. Here we present a hybrid coronagraph architecture in which a binary, hard-edged shaped pupil mask replaces the gray, smooth apodizer of the apodized pupil Lyot coronagraph (APLC). For any contrast and bandwidth goal in this configuration, as long as the prescribed region of contrast is restricted to a finite area in the image, a shaped pupil is the apodizer with the highest transmission. We relate the starlight cancellation mechanism to that of the conventional APLC. We introduce a new class of solutions in which the amplitude profile of the Lyot stop, instead of being fixed as a padded replica of the telescope aperture, is jointly optimized with the apodizer. Finally, we describe shaped pupil Lyot coronagraph (SPLC) designs for the baseline architecture of the Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets (WFIRST-AFTA) coronagraph. These SPLCs help to enable two scientific objectives of the WFIRST-AFTA mission: (1) broadband spectroscopy to characterize exoplanet atmospheres in reflected starlight and (2) debris disk imaging.Comment: 41 pages, 15 figures; published in the JATIS special section on WFIRST-AFTA coronagraph

    Optimal pupil apodizations for arbitrary apertures

    Full text link
    We present here fully optimized two-dimensional pupil apodizations for which no specific geometric constraints are put on the pupil plane apodization, apart from the shape of the aperture itself. Masks for circular and segmented apertures are displayed, with and without central obstruction and spiders. Examples of optimal masks are shown for Subaru, SPICA and JWST. Several high-contrast regions are considered with different sizes, positions, shapes and contrasts. It is interesting to note that all the masks that result from these optimizations tend to have a binary transmission profile.Comment: 16 pages, 10 figure

    Multi-stage four-quadrant phase mask: achromatic coronagraph for space-based and ground-based telescopes

    Full text link
    Less than 3% of the known exoplanets were directly imaged for two main reasons. They are angularly very close to their parent star, which is several magnitudes brighter. Direct imaging of exoplanets thus requires a dedicated instrumentation with large telescopes and accurate wavefront control devices for high-angular resolution and coronagraphs for attenuating the stellar light. Coronagraphs are usually chromatic and they cannot perform high-contrast imaging over a wide spectral bandwidth. That chromaticity will be critical for future instruments. Enlarging the coronagraph spectral range is a challenge for future exoplanet imaging instruments on both space-based and ground-based telescopes. We propose the multi-stage four-quadrant phase mask that associates several monochromatic four-quadrant phase mask coronagraphs in series. Monochromatic device performance has already been demonstrated and the manufacturing procedures are well-under control since their development for previous instruments on VLT and JWST. The multi-stage implementation simplicity is thus appealing. We present the instrument principle and we describe the laboratory performance for large spectral bandwidths and for both pupil shapes for space- (off-axis telescope) and ground-based (E-ELT) telescopes. The multi-stage four-quadrant phase mask reduces the stellar flux over a wide spectral range (30%) and it is a very good candidate to be associated with a spectrometer for future exoplanet imaging instruments in ground- and space-based observatories.Comment: 7 pages, 11 figures, 4 tables, accepted in A&

    High-performance luminescent solar concentrators based on poly(Cyclohexylmethacrylate) (PCHMA) films

    Get PDF
    In this study, we report on the use of poly(cyclohexylmethacrylate) (PCHMA) as an alternative to the commonly used poly(methylmethacrylate) (PMMA) for the design of efficient luminescent solar concentrators (LSCs). PCHMA was selected due to its less polar nature with respect to PMMA, a characteristic that was reported to be beneficial in promoting the fluorophore dispersibility in the matrix, thus maximizing the efficiency of LSCs also at high doping. In this sense, LSC thin films based on PCHMA and containing different contents of Lumogen F Red 305 (LR, 0.2–1.8 wt%) demonstrated optical efficiencies (ηopt) comprising between 9.5% and 10.0%, i.e., about 0.5–1% higher than those collected from the LR/PMMA systems. The higher LR/polymer interactions occurred using the PCHMA matrix maximized the solar harvesting characteristics of the fluorophore and limited the influence of the adverse dissipative phenomena on the fluorophore quantum efficiency. These effects were also reflected by varying the LSC film thickness and reaching maximum ηopt of about 11.5% in the case of PCHMA films of about 30 µm

    High-contrast imager for Complex Aperture Telescopes (HiCAT): 1. Testbed design

    Get PDF
    Searching for nearby habitable worlds with direct imaging and spectroscopy will require a telescope large enough to provide angular resolution and sensitivity to planets around a significant sample of stars. Segmented telescopes are a compelling option to obtain such large apertures. However, these telescope designs have a complex geometry (central obstruction, support structures, segmentation) that makes high-contrast imaging more challenging. We are developing a new high-contrast imaging testbed at STScI to provide an integrated solution for wavefront control and starlight suppression on complex aperture geometries. We present our approach for the testbed optical design, which defines the surface requirements for each mirror to minimize the amplitude-induced errors from the propagation of out-of-pupil surfaces. Our approach guarantees that the testbed will not be limited by these Fresnel propagation effects, but only by the aperture geometry. This approach involves iterations between classical ray-tracing optical design optimization, and end-to-end Fresnel propagation with wavefront control (e.g. Electric Field Conjugation / Stroke Minimization). The construction of the testbed is planned to start in late Fall 2013.Comment: Proc. of the SPIE 8864, 10 pages, 3 figures, Techniques and Instrumentation for Detection of Exoplanets V

    Simultaneous existence of two spin-wave modes in ultrathin Fe/GaAs(001) films studied by Brillouin Light Scattering: experiment and theory

    Full text link
    A double-peaked structure was observed in the {\it in-situ} Brillouin Light Scattering (BLS) spectra of a 6 \AA thick epitaxial Fe/GaAs(001) film for values of an external magnetic field HH, applied along the hard in plane direction, lower than a critical value Hc0.9H_c\simeq 0.9 kOe. This experimental finding is theoretically interpreted in terms of a model which assumes a non-homogeneous magnetic ground state characterized by the presence of perperpendicular up/down stripe domains. For such a ground state, two spin-wave modes, namely an acoustic and an optic mode, can exist. Upon increasing the field the magnetization tilts in the film plane, and for HHcH \ge H_{c} the ground state is homogeneous, thus allowing the existence of just a single spin-wave mode. The frequencies of the two spin-wave modes were calculated and successfully compared with the experimental data. The field dependence of the intensities of the corresponding two peaks that are present in the BLS spectra was also estimated, providing further support to the above-mentioned interpretation.Comment: Shortened version (7 pages). Accepted for publication in Physical Review

    β-Cell Generation: Can Rodent Studies Be Translated to Humans?

    Get PDF
    β-cell replacement by allogeneic islet transplantation is a promising approach for patients with type 1 diabetes, but the shortage of organ donors requires new sources of β cells. Islet regeneration in vivo and generation of β-cells ex vivo followed by transplantation represent attractive therapeutic alternatives to restore the β-cell mass. In this paper, we discuss different postnatal cell types that have been envisaged as potential sources for future β-cell replacement therapy. The ultimate goal being translation to the clinic, a particular attention is given to the discrepancies between findings from studies performed in rodents (both ex vivo on primary cells and in vivo on animal models), when compared with clinical data and studies performed on human cells
    corecore